Symplectic quaternion scheme for biophysical molecular dynamics

نویسندگان

  • T. F. Miller
  • D. Newns
  • G. J. Martyna
چکیده

Massively parallel biophysical molecular dynamics simulations, coupled with efficient methods, promise to open biologically significant time scales for study. In order to promote efficient fine-grained parallel algorithms with low communication overhead, the fast degrees of freedom in these complex systems can be divided into sets of rigid bodies. Here, a novel Hamiltonian form of a minimal, nonsingular representation of rigid body rotations, the unit quaternion, is derived, and a corresponding reversible, symplectic integrator is presented. The novel technique performs very well on both model and biophysical problems in accord with a formal theoretical analysis given within, which gives an explicit condition for an integrator to possess a conserved quantity, an explicit expression for the conserved quantity of a symplectic integrator, the latter following and in accord with Calvo and Sanz-Sarna, Numerical Hamiltonian Problems ~1994!, and extension of the explicit expression to general systems with a flat phase space. © 2002 American Institute of Physics. @DOI: 10.1063/1.1473654#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Geometric Algorithm for Quaternion Kinematical Differential Equation

Solving quaternion kinematical differential equations is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neither preserve the norm of quaternions nor avoid errors accumulated in the sense of long term time. We present symplectic geometric algorithms to deal with the quaternion kinematical differ...

متن کامل

Finite-time stabilization of satellite quaternion attitude

In this paper, a finite-time control scheme is presented for stabilization of the satellite chaotic attitude around its equilibrium point when its attitude is confused by a disturbed torque. Controllers and settling time of stabilizaton are obtained, based on the Lyapunov stability theorem and finite-time control scheme. This method is satisfied for any initial condition. Numerical simulations ...

متن کامل

Conservation of Hamiltonian Using Continuous Galerkin Petrov Time Discretization Scheme

Continuous Galerkin Petrov time discretization scheme is tested on some Hamiltonian systems including simple harmonic oscillator, Kepler’s problem with different eccentricities and molecular dynamics problem. In particular, we implement the fourth order Continuous Galerkin Petrov time discretization scheme and analyze numerically, the efficiency and conservation of Hamiltonian. A numerical comp...

متن کامل

Clifford Algebras in Symplectic Geometry and Quantum Mechanics

The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C0,2. This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enab...

متن کامل

Molecular Dynamics of Surface-Moving Thermally Driven Nanocars.

We developed molecular models describing the thermally initiated motion of nanocars, nanosized vehicles composed of two to four spherical fullerene wheels chemically coupled to a planar chassis, on a metal surface. The simulations were aimed at reproducing qualitative features of the experimentally observed migration of nanocars over gold crystals as determined by scanning tunneling microscopy....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002